

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

在消费类技术硬件领域,唯有创新才能生存。成功推出一款新的智能设备,就代表要与世界上某家规模最大的企业以及敏锐的初创企业竞争。科技产业的研发预算从未如此之高,设备制造商的新产品投入达数十亿美元^{1,2}。.

互联设备制造商正面临各种开发需求,这些需求主要围绕不断推进的5G布局、6G开发,以及越来越先进处理器和传感器的高数据速率。消费类设备及后端电子产品需要定期更新设计,以适应新标准。例如,6G很可能会支持太赫兹甚至光学工作频率,进而需要开发新一代天线及电子产品。一般来说,印刷电路板(PCB)和半导体封装必须在没有散热、信号完整性或电磁兼容性(EMC)问题的情况下,处理显著增加的数据速率。不仅要符合美国联邦通信委员会(FCC)标准,而且还要遵守全球其它地方法规和欧洲生态设计规则。在提供折叠式和模块化手机等新外形设计的同时,设备还必须保持轻巧纤薄。

制造商深知,缩短开发周期并率先将创新推向市场,是获得竞争优势的关键。虚拟原型设计有助于降低成本和风险,从而可为新产品符合规范并通过监管认证带来自信。这可通过使用虚拟孪生执行仿真来实现。

本电子书主要要点

- · 虚拟孪生的多物理场仿真可带来生产力的显著提升。
- · 电磁、结构及热仿真可发现潜在问题并优化设备的整体性能。
- ·基于**3DEXPERIENCE***平台的<u>MODSIM</u>有助于设计人员和工程师协同进行CAD设计、多物理场仿真、需求与项目管理,从而缩短产品周期。
- 虚拟原型设计和预合规性测试为全面监管认证铺平了道路。

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

虚拟孪生

虚拟孪生是实际产品的数字表达方式以及围绕其中的整体体验。它 在真实性的单个来源中包含所有相关数据,其中包括需求、几何结 构以及测试结果等。

基于物理场的仿真在该虚拟模型上执行,以探索产品在装配、工作 或经历一系列事件时的反应。

虚拟测试有助于优化并验证设计、材料以及生产过程。因为是虚拟 的,因此可最大限度减少成本高昂、耗时且浪费的原型。

"虚拟孪生仿真可帮助我们预测实际会发生的情况。这 在开展设计工作时价值极高,因为可以在构建任何事 物之前了解将会发生的情况。"

Jonathan Oakley,SIMULIA高科技支持总监

CE BORE

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

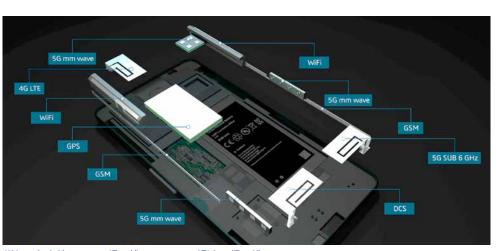
功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

天线设计助力实现全面连接

天线是确保连接的重要组件,要想可靠运行,就得精心设计、布局。设备中的天线不仅要符合诸如空间覆盖和总辐射功率(TRP)等 KPI要求,同时还要避免相邻天线(共站点)的干扰并保持在特定吸收率(SAR)和最大允许暴露(MPE)限制内。5G,特别是6GHz以上的高频段5G,需要新的天线布局方法、海量多输入多输出(MIMO)以及波束控制。


天线工程师必须设计符合现代数据连接要求的复杂集成天线。电磁 仿真对于了解天线性能至关重要,特别是安装在复杂环境中时。从 最初的设计到最终的性能验证,仿真可以应用于天线开发的每个 阶段。

现代智能手机整合的多根天线必须符合大量KPI及监管标准。 在5G毫米波中,覆盖范围和合规性都需要对整部手机进行仿 真。智能手机的虚拟孪生包含准确分析所需的所有细节。

"仿真帮助我们优化了天线设计流程,并在移动设备上 实现了革命性的支付体验。"

Tony Honkanen,<u>Aava Mobile</u>技术副总裁

增加了复杂性: 4G: 5根天线, 5G+4G: 超过11根天线

科技产业挑战

虚拟孪生

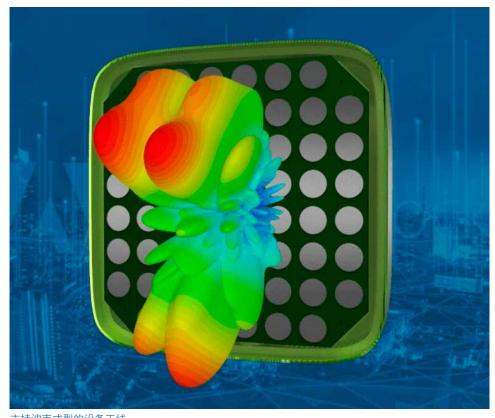
天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性


为什么要仿真?

天线设计助力实现全面连接

天线设计: 现代设备天线通常为定制设计, 受空间及外形限制。优 化允许工程师对天线进行微调,以符合严格的要求及约束条件。天 线综合工具可帮助工程师找到适合相关工作的最佳天线。综合将直 接生成仿真就绪的3D几何结构,用于优化或布局。综合工作流程速 度快,可在几分钟内启动分析,无需等待物理原型。

天线布局: 设备本身和周边环境(包括人体的存在)都会影响天线 的性能。了解安装性能,对于确保设备工作达到日常使用预期至关 重要。仿真可展示天线在实际复杂场景中的表现,包括难以测量的 场景。天线制造商可向其OEM厂商客户或系统集成商提供加密的仿 真就绪型模型,无需泄露敏感知识产权(IP),便可进行布局分析。

阵列、MIMO和波束控制:为实现可靠的连接和更高的带宽、需 要更多的数据通道,每通道的数据速率更高。实现这一点的方 法很多。波束控制使用相控阵天线来塑造波束并将其定向到基 站。MIMO和多路径传播采用环境来反射波束,以创建更多的空间 通道和容量。仿真可对设备上多个天线之间复杂的相互作用进行建 模。综合工具能够大幅加速阵列设计以及5G毫米波码本优化。

支持波束成型的设备天线。

"CST Studio Suite仿真不仅可取代手机天线的原型构建, 而且还可将产品上市时间缩短35%。"

Si Li,OPPO天线专家

科技产业挑战

虚拟孪生

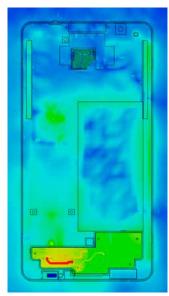
天线设计

高速电子产品

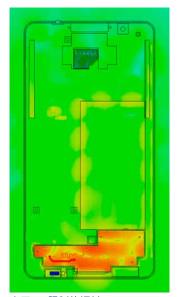
热管理

功能强大、坚固耐用的设备

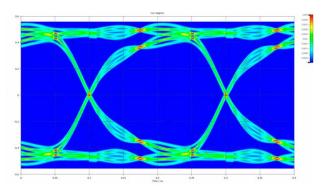
监管合规性


为什么要仿真?

高速、可靠的电子产品


数据通过PCB、连接器和线缆从天线传输至处理器。阳抗失配和设 计不佳的过渡不仅会导致信号完整性(SI)问题和串扰,而且还会带来 无用的辐射发射以及更高的外界干扰易感度。这些影响可降低电子 产品的可靠性,并可能会在认证流程中导致失败。随着数据速率的 提高以及电子产品的小型化和三维化、传统的电路仿真和2D平面仿 真已无法完全捕获高频率信号的传播。只有3D电磁仿真才能捕获导 致SI问题的所有磁场及电流行为,这可降低硬件测试过程中出现问 题的风险。

- · 虚拟测试:存在用于EMC和SI相关测量的标准测试,如时域反射 法(TDR)和眼图等。针对这些内容进行物理测试,不仅需要构建原 型,而且还需要漫长而成本高昂的实验时间。借助虚拟孪生,这 些测量可以在仿真中复制,无需构建原型。
- ·在EDA工作流程中集成:广泛使用的电子设计自动化(EDA)布局工 具,以及大量专有开源格式,都可以与仿真联系起来。PCB布局 自动转化为准确的仿真就绪型3D模型。这些既可以与线缆及连接 器结合,执行整个通道仿真,也可以整合到外壳中,分析屏蔽和 泄漏(见插图框)。3D结构甚至可以进行弯曲和拉伸,用于柔性 PCB仿真。


高速数据线如天线一样,可能会导致干扰、不必要的发射以及更 高的易感度。基于虚拟孪生的仿真可清晰地展示发射超过FCC限 制的频段,帮助工程师确定正确的缓解及屏蔽策略。

低于FCC限制的辐射。

高干FCC限制的辐射。

端到端数据诵道的典型眼图。

科技产业挑战

虚拟孪生

天线设计

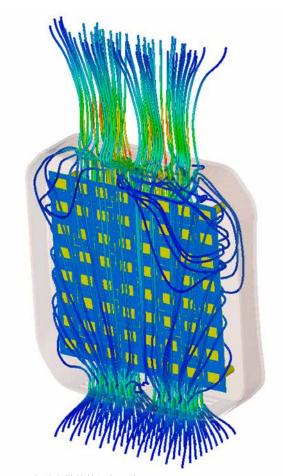
高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?



热管理

过热会对设备性能产生不良影响,并可能导致损坏甚至爆炸3。就 电池而言,这引起过一些沸沸扬扬的设备召回事件,损害了品牌声 誉。热仿真不仅可以与电磁仿真耦合, 计算发热, 而且还可以与流 体仿真耦合,建模通过设备的气流,以确保高效的散热致冷。不仅 得出结果比物理测试更快,而且工程师还可快速分析各种不同的场 景, 例如极端天气或通风口堵塞等。

- · **多物理场仿真**: 散热与其它学科之间联系密切。组件在过热前会 消耗多少电源?改变PCB布局是否会影响气流?通风口电磁场泄漏 是否会引起电磁干扰(EMI)?多物理场仿真有助于工程师通过相同 的模型分析大量不同的物理域: 电磁、结构、热、流体流动和运 动,因此,可通过虚拟孪生研究物理现象之间复杂的相互作用。
- · **电池设计**:安装在设备中时,电池必须保持凉爽,以避免可能损 坏电池或导致火灾的热失控效应。此外,结构完整性也很重要, 因为跌落或撞击对电池造成的损坏也会导致过热或者更糟糕的情 况。专业电池仿真工具可分析已安装电池的性能,以降低过热风 险。此外, 电化学、电热、循环及日历老化仿真也可确保优化设 计电池单元。

配备高速处理器的紧凑现代设备可能会发热,拿起来不舒服。通 过热仿真研究最坏情况,可在不造成损坏的情况下,管理并消散 热量。

展示气流和散热的设备天线

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

功能强大、坚固耐用的设备

屏幕破碎、充电端口损坏、按键磨损,对于许多手机用户而言并不 陌生。这不仅会导致高昂的质保维修成本,而且还会损害制造商声 誉。虚拟测试有助干提高质量,降低质保成本。

实现可持续发展目标: 提高可持续发展能力的需求增加了对更耐 用、可修复设备的需求。新的欧盟生态设计规则以与现行能效法规 相同的方式,对耐用性进行规范和标识。仿真可确保在整个开发周 期中满足强度和耐用性KPI要求,从而可帮助工程师设计并构建可持 续性更高的设备。

- ·虚拟测试:结构仿真可在虚拟世界里复制装配预应力、跌落测 试、三点弯折以及浸水等常规测试。必须进行数百次测试,才能 确保顾及所有方向、各种情况和各种模型变体。仿真自动化和实 验设计(DOE)可在不需要进行数百次受控物理测试所需时间和 成本的情况下,自动设置和运行复杂的测试场景。
- · 轻量化: 优化和生成设计可在不影响强度、热性能和电磁性能的 情况下,最大限度减少重量和材料使用。
- · 疲劳仿真: 随着时间的推移, 反复按压按钮或插入USB连接器会磨 损组件。疲劳仿真是一种仅在短短几小时内,便可建模多年使用 情况的有效途径。

跌落测试需要对多种变体和场景进行数百次循环测试,不仅成本 高,而且还很耗时。结构仿真可以快速准确地预测设备在多次跌 落循环中的韧性。

. 多物理场仿真可评估设备损坏是否会降 低其性能。为提高电磁或热性能而进行 的修改是否会降低设备的耐用性? 仿真 不仅可降低不可预见行为的风险,而且 还可确保做出正确的利弊权衡,以实现 最佳设计。

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

监管合规性

要进入市场,设备必须通过一系列监管测试。这些合规性标准因地区而异,有些行业(如航空航天与国防)还实施了额外的安全相关规则。仿真可显著缩短认证流程,降低风险,并简化监管环境。监管机构对将仿真结果作为认证依据的接受度日益增强。例如,FCC认证不需要一系列耗时的物理测试结果,接受SAR和MPE的<u>仿真</u>结果。

"产品设计人员必须做到万无一失,因此使用虚拟孪生进行预合规性仿真,有助于在构建原型之前满足地区合规性法规要求。"

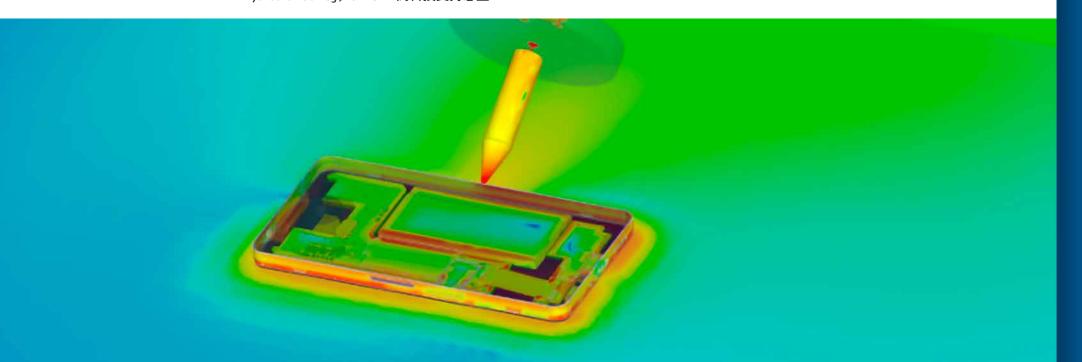
Jonathan Oakley,SIMULIA高科技支持总监

静电放电(ESD)易感度测试需要专用设备设施。受测器件(DUT)及 ESD设备的全面测试场景可通过虚拟孪生复制。

SIMULIA是公认的市场领导者,主要为虚拟测试提供ESD生成器 虚拟孪生技术。 科技产业挑战

虚拟孪生

天线设计


高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

监管合规性

仿真在监管合规性方面的应用包括:

- · EMI和EMC:设备不仅不得干扰附近的设备,而且还必须能抵抗来自其它设备的干扰。仿真可分析并预测EMI及EMC性能。3D可视化有助于工程师了解干扰的根本原因,了解如何通过屏蔽、滤波以及其它技术来减少干扰。参考: CISPR 32/35,FCC认证联邦法典第47卷第15部分
- · ESD和浪涌电阻:静电放电和电气快速瞬变(EFT)是短暂的高压浪涌,会损坏设备。仿真不仅可使用虚拟ESD枪复制实验室测试,而且还可对接触式和非接触式放电场景进行建模。参考: IEC EN 61000-4系列, ISO 10605
- · SAR/MPE与人体射频暴露: 当电磁场与人体组织相互作用时,一些能量会被人体吸收,产生加热效应。出于安全考虑,对射频(RF)场暴露有严格限制。由于很难测量人体内的功率,因此仿真对于分析SAR和高频段5G中所需的较近MPE至关重要。参考: FCC认证联邦法典第47卷第1.1310条,IEC/IEEE 62704系列

- ·防水与防尘:设备必须能够防止污染物侵入,并能防止意外接触电气部件。参考: IEC入口保护(IP)标准,IP67,IP68
- · 坚固耐用、生态设计:在某些市场,例如国防市场,标准会规定物理强度和坚固性。新的《欧盟可持续产品生态设计法规》(ESPR)标准还会将这些内容纳入消费类设备。通过仿真,可在虚拟环境下执行跌落测试等破坏性测试。参考: MIL-STD-810G
- · 电池认证:以往发生的电池火灾影响极大⁴,因此针对设备电池安全做出了严格的规定,特别是航空运输。参考: UN 38.3,UL 2054,IEEE 1725

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

为什么要仿真?

达索系统的建模和仿真技术,可帮助工程师在产品开发周期的早期阶段设计、理解、优 化和验证其智能设备。在物理测试开始前,虚拟孪生可以高度确信,设备将通过合规认 证并满足所需的KPI要求。

率先上市

使用虚拟孪生可减少甚至消除对 物理原型的需求。快速获得设计 反馈,发现并解决问题。

创新

在开发早期测试创新的可行性。 使用DOE探索设计空间,以寻找 潜在的解决方案。

监管合规性

仿真可显著加速合规认证,降低 失败风险并增加最终设计一次性 通过的信心。

仿真支持的优化可减轻重量,降 低成本,提高空间利用率,降低 能耗并提高性能。

虚拟测试

虚拟孪生不仅可帮助您可视化 多个真实测试案例并对其进行仿 真,而且还可在几小时内对使用 年限进行建模。

节约成本

使用虚拟孪生,低成本地加速产 品开发。避免成本高昂的后期设 计修改风险。

科技产业挑战

虚拟孪生

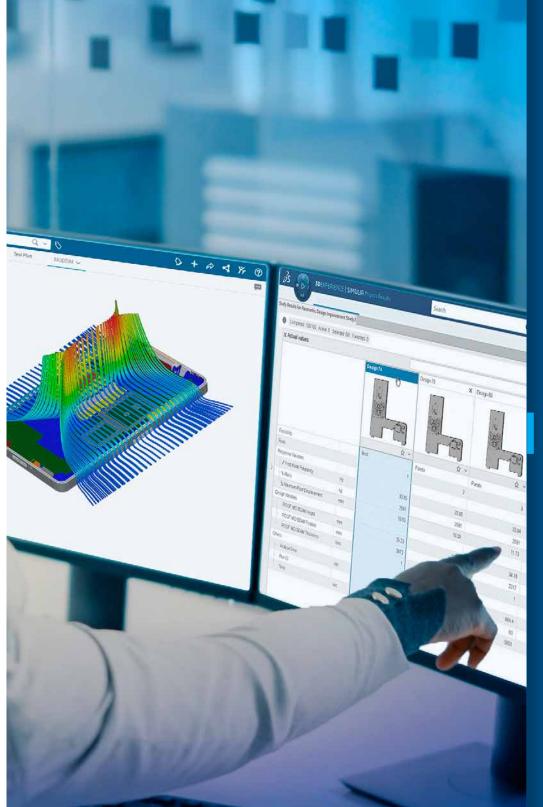
天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性


为什么要仿真?

为什么设备制造商需要统一的建模仿真?

在竞争激烈的市场上,创新和率先上市是产品成功的决定性因素,制造商必须确保其流程符合工作要求。重新思考流程,使产品设计人员与仿真工程师及分析师保持联系与协作,在通用数据模型上开展工作,可实现更好的沟通以及更快的反馈环路。将仿真左移至产品设计流程的最初阶段,有助于缩短开发和认证流程并加快产品交付速度。

我们称之为统一建模与仿真流程(简称MODSIM)。

- **更快的开发**:在MODSIM下,模型必须一次构建成功。**所有设计和分析任务都使用相同的数据**,这不仅可节省时间和开发成本,而且还可降低项目的复杂性。
- ·通过真实性的单个来源协作:团队可通过相同模型高效协作,这不仅可降低文件传输中的固有风险,而且还可提供完整的可追溯性。
- ·任何工具中的设计:灵活选择您喜欢的设计工具:达索系统的 CATIA和SOLIDWORKS或第三方CAD工具。

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

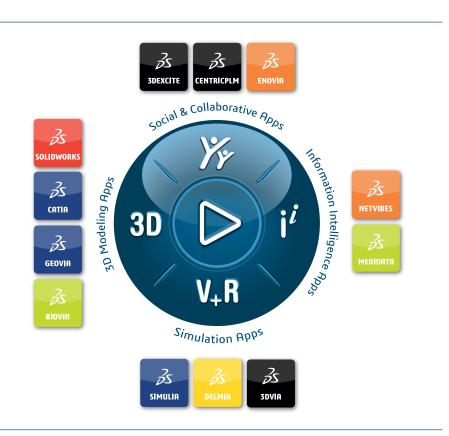
功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

MODSIM — 统一建模与仿真

1 1



我们的**3D**EXPERIENCE®平台能为各品牌应用注入强大动力,服务于12 大行业,并提供丰富多样的行业解决方案体验。

作为一家**3DEXPERIENCE**解决方案公司,达索系统是人类进步的"催化剂"。我们为企业和用户提 供可持续构想创新产品的虚拟协作环境。我们的客户通过我们的3DEXPERIENCE平台和应用创建真 实世界的虚拟孪生体验,这可重新定义其产品创建、生产和全生命周期管理过程,从而对世界的 可持续发展产生深远影响。体验经济的魅力在于它是以人为本的经济,主要为消费者、患者以及 公民等全人类谋福祉。

达索系统为150多个国家超过29万个不同行业、不同规模的客户带来价值。如欲了解更多详情, 敬请访问:www.3ds.com。

欧洲 / 中东 / 非洲

达索系统 10, rue Marcel Dassault CS 40501 78946 Vélizy-Villacoublay Cedex France

亚太地区

2-1-1 Osaki, Shinagawa-ku,

Dassault Systèmes 175 Wyman Street Waltham, Massachusetts 02451-1223 USA

科技产业挑战

虚拟孪生

天线设计

高速电子产品

热管理

功能强大、坚固耐用的设备

监管合规性

为什么要仿真?

MODSIM - 统一建模与仿真

Dassault Systèmes K.K. ThinkPark Tower Tokyo 141-6020

